The value of ∫121x(1+x4)dx is
14log1732
14log3217
log172
14log172
Explanation for correct option:
Compute the required value:
Given: ∫121x(1+x4)dx
multiply x3to both numerator and denominator
∫12x3x4(1+x4)dx
Let x4=t⇒4x3dx=dt
When x=1,t=1x=2,t=16
=14∫1161t(1+t)dt=14∫116t+1-tt(1+t)dt=14∫1161t-1(1+t)dt=14∫1161t·dt-∫1161(1+t)dt=14log(t)116-14log(1+t)116as∫1xdx=log(x)=14log(16)-log(1)-log(17)+log(2)=144log(2)+log(2)-log(17)=145log(2)-log(17)=14log(32)-log(17)=14log3217
Hence, option B is the correct answer.