The value of∫π2π2sin(x)dx is
π3
-5π3
4π3
-π3
Explanation for all correct options
Given: ∫π2π2sin(x)dx
According to integral
π≤x≤2π
taking sin to both sides
-1≤sin(x)≤0
When -12=sin(x)
x=7π6,11π6
∫π2π2sin(x)dx=∫π7π6-1dx+∫7π611π6-2dx+∫11π62π-1dx=-xπ7π6-2x7π611π6-1x11π62π=-7π6-π-211π6-7π6-2π-11π6=-7π-6π6-211π-7π6-12π-11π6=-π6-2×4π6-π6=-π-8π-π6=-5π3
Hence, option B is correct.