The value of limx→01-cos(1-cosx)x4 is
12
14
16
18
Explanation for the correct option:
Compute the value of the given expression.
Given, limx→01-cos(1-cosx)x4
Simplify the given expression as follows:
limx→01-cos(1-cosx)x4=limx→01-cos2sin2x2x4⇒=limx→02sin2sin2x2x4⇒=2limx→0sin2sin2x2x4·sin2x22sin2x22·2424Multiplynumeratoranddemoninatorby24sin2x22⇒=2limx→0sin2sin2x2sin2x22·sin2x22x4·2424⇒=2limx→0sinsin2x2sin2x22·sin2x22x424·124⇒=2limx→0sinsin2x2sin2x22·sinx2x24·124⇒=2·12·14·124∵limx→0sinxx=1⇒=18
Therefore, The value of limx→01-cos(1-cosx)x4 is 18.
Hence, option (D) is the correct answer.
If x4+1x4=119,find the value of x3−1x3.
if x4+x3+x2+x+1=0 then the value of x5 is