We have to prove that cos −1 12 13 + sin −1 3 5 = sin −1 56 65 .
Consider sin −1 3 5 =x, then,
sinx= 3 5 cosx= 1− sin 2 x = 1− ( 3 5 ) 2 = 4 5
Another trigonometric function is,
tanx= sinx cosx = 3 4 x= tan −1 3 4 sin −1 3 5 = tan −1 3 4
Consider cos −1 12 13 =y, then,
cosy= 12 13 siny= 1− cos 2 y = 1− ( 12 13 ) 2 = 5 13
Another trigonometric function is,
tany= siny cosy = 5 12 y= tan −1 5 12 cos −1 12 13 = tan −1 5 12
Substitute sin −1 3 5 = tan −1 3 4 and cos −1 12 13 = tan −1 5 12 to left hand side of the given equation,
cos −1 12 13 + sin −1 3 5 = tan −1 5 12 + tan −1 3 4 = tan −1 ( 3 4 + 5 12 1− 3 4 × 5 12 ) = tan −1 36+20 48−15 = tan −1 56 33
Consider the right hand side sin −1 56 65 =z, then,
sinz= 56 65 cosz= 1− sin 2 z = 1− ( 56 65 ) 2 = 33 65
Another trigonometric function is,
tanz= sinz cosz = 56 33 z= tan −1 56 33 sin −1 56 65 = tan −1 56 33
Hence, it is proved that L.H.S.=R.H.S..