Prove that: 1 + 2 + 3 + ......... + n = n(n+1)2 i.e., the sum of the first n natural numbers is n(n+1)2.
Let P(n) : 1 + 2 + 3 + ........ + n = n(n+1)2
For n = 1,
LHS of P(n) = 1
RHS of P(n) =1(1+1)21=1
Since, LHS = RHS
⇒ P(n) is true for n = 1
Let P(n) be true for n = k, so
1 + 2 + 3 + ........ + k = k(k+1)2......(1)
Now
(1 + 2 + 3 + ....... + k) + (k + 1)
=k(k+1)2+(k+1)
=(k+1)(k2+1)
=(k+1)(k+2)2
=(k+1)[(k+1)+1]2
⇒ P(n) is true for n = k + 1
⇒ P(n) is true for all n ϵ N
So, by the principle of mathematical induction
P(n) : 1 + 2 + 3 + ........ + n = n(n+1)2 is true for all n ϵ N.