=n2n−2[2+n−1]=n(n+1)2n−2
keeping in view 23C2 or 33C3
Differentiate and multiply by x
n(1+x)n−1x=C1x+2C2x2+3C3x3+......
Again differentiate and multiply by x
nx{(n−1)(1+x)n−2⋅x+1(1+x)n−1}
=C1x+22C2x2+32C3x3+....
or n(n−1)(1+x)n−2x2+nx(1+x)n−1=C1x+22C2x2+32C3x3+..........
Differentiate again w.r.t. x.
n(n−1){(n−2)⋅(1+x)n−3⋅x2+(1+x)n−2⋅2x} +n{(n−1)x(1+x)n−2+1(1+x)n−1}
=C1+23C2x+33C3x2+.....
Now put x = 1
n(n−1){(n−2)2n−3+2n−2⋅2}+n(n−1)2n−2+n⋅2n−1
2n−3{n(n−1)(n−2)+4n(n−1)+2n(n−1)+4n}
=2n−3n(n2−3n+2+4n−4+2n−2+4)
=2n−3n(n2+3n)=n2(n+3)2n−3