Consider the given integral,
I= ∫ 0 1 2x+3 5 x 2 +1 dx
Now, integrate the function,
∫ 2x+3 5 x 2 +1 dx = ∫ 2x 5 x 2 +1 dx + ∫ 3 5 x 2 +1 dx = 1 5 ∫ 10x 5 x 2 +1 dx +3 ∫ 1 5 x 2 +1 dx = 1 5 ∫ 10x 5 x 2 +1 dx +3 ∫ 1 5( x 2 + 1 5 ) dx )
Further simplify,
∫ 2x+3 5 x 2 +1 dx = 1 5 log( 5 x 2 +1 )+ 3 5 1 1 5 tan −1 x 1 5 = 1 5 log( 5 x 2 +1 )+ 3 5 tan −1 ( 5 x ) =F( x )
By fundamental theorem of calculus, we get
I=F( 1 )−F( 0 ) =[ 1 5 log( 5+1 )+ 3 5 tan −1 5 ]−[ 1 5 log( 0+1 )+ 3 5 tan −1 ( 0 ) ] = 1 5 log6+ 3 5 tan −1 5
Thus, the solution of integral is 1 5 log6+ 3 5 tan −1 5 .