1.3+2.32+3.33+⋯+n.3n=(2n−1)3n+1+34
Let P(n)=1.3+2.32+3.33+⋯+n.3n=(2n−1)3n+1+34
For n = 1
P(1)=1.3=(2×1−1)31+1+34⇒3=9+34⇒3=3∴P(1)
Let p(n) be true for n = k
∴P(k)=1.3+2.32+3.33+⋯+k.3k=(2k−1)kk+1+34forn=k+1P(k+1)=1.3+2.32+3.33+⋯+k.3K+(k+1).3k+1=(2k−1)3k+1+34+(k+1).3k+1=(2k−1).3k+14+34+(k+1)3k+1=3k+1[2k−14+k+1]+34=3k+1[2k−1+4k+44]+34=3k+1[6k+34]+34=3k+1.3(2k+1)4+34=(2k+1)3k+2+34
∴ P(k + 1) is true
Thus P (k ) is true ⇒P(k+1) is true Hence by principle fo mathematical induction