The correct option is C All natural numbers n
Le P(n) be the given statement
i.e. P(n) : 1.3 + 3.5 + 5.7 + ........... + (2n -1)(2n+1)
=n(4n2+6n−1)3
Putting n=1,L.H.S.=1.3=3 and RHS=1(4.12+6.1−1)3
=4+6−13=93=3
LHS = RHS
∴ P(n) is true for n = 1
Assume that P(n) is true for n = k
i.e., p(k) is true
i.e., P(k) : 1.3 + 3.5 + 5.7 + ............ + (2k-1)(2k+1)
=k(4k2+6k−1)3
Last term = (2k -1)(2k +1)
Replacing k by (k+1), we get
[2(k+1)−1][2(k+1)+1]=(2k+1)(2k+3)
∴ Adding (2k+1)(2k+3) on both sides.
∴LHS=1.3+3.5+5.7+...........+(2k−1)(2k+1)+(2k+1)(2k+3)
R.H.S=k(4k2+6k−1)3+(2k+1)(2k+3)
=(4k3+6k2−k)+3(2k+1)(2k+3)3
=4k3+18k2+23+93
=(k+1)(4k2+14k+9)3
=(k+1)(4(k+1)2+6(k+1)−1)3 ............ (iii)
Thus, P(n) is true for n = k + 1
∴ P(k+1) is true whenever P(k) is true
Hence, by P(n) is true for all n ∈ N