1.3+3.5+5.7+⋯+(2n−1)(2n+1)=n(4n2+6n−1)3.
Let P (n) = 1.3+3.5+5.7+⋯+(2n−1)(2n+1)=n(4n2+6n−1)3.
For=(2×1−1)(2×1+1)=1[4(1)2+6×1−1]3⇒1×3=93⇒3=3∴P(1)is true
Let P (n) be true for n = k
∴P(k)=1.3+3.5+5.7+⋯+(2k−1)(2k+1)=k(4k2+6k−1)3Forn=k+1P(k+1)=1.3+3.5+5.7+⋯+(2k−1)(2k+1)+[2(k+1)−1][2(ki+1)+1]∴P(k+1)=k(4k62+6k−1)3+(2k+1)(2k+3)=4k3+6k2−k+3(4k2+8k+9)3=4k3+6k2−k+12k2+24k+93=4k3+18k2+23k+93=(k+1)(4k2+14k+9)3
∴ P (k + 1) is true
Thus P (k) is true ⇒(k+1) is true hence by principle f amthematical induction
P (n) is true for all nϵN.