1(1-2i)+3(1+i)3+4i2-4iis equal to
12+92i
12-92i
14-94i
14+94i
Explanation for the correct option:
Step 1. Simplify the given expression:
1(1-2i)+3(1+i)3+4i2-4i =1+i+3−6i(1−2i)(1+i)3+4i2−4i
=4−5i3−i3+4i2−4i
=12+16i-15i+206-12i-2i-4 ∵i2=-1
=32+i2−14i
Step 2. By Rationalizing denominator, we get
32+i2−14i×2+14i2+14i=64+448i+2i−144+196
=50+450i200=14+94i
Hence, option ‘D’ is Correct.
Express the following complex numbers in the standard form a + i b :
(i) (1+i)(1+2i)(ii) 3+2i−2+i(iii) 1(2+i)2(iv) 1−i1+i(v) (2+i)32+3i(vi) (1+i)(1+√3i)1−i(vii) 2+3i4+5i(viii) (1−i)31−i3(ix) (1+2i)−3(x) 3−4i(4−2i)(1+i)(xi) (11−4i−21+i)(3−4i5+i)(xii) 5+√2i1−√2i