11.2+12.3+13.4+….+1n(n+1)equals
1n(n+1)
n(n+1)
2n(n+1)
Explanation for the correct option:
Rearrange the given expression as sum of difference of two terms
11.2+12.3+13.4+….+1n(n+1)
=(2-1)1.2+(3-2)2.3+(4-3)3.4+….+(n+1)-nn(n+1)
=21.2–11.2+32.3–22.3+43.4–33.4+.....+(n+1)n(n+1)–nn(n+1)
=1–12+12-13+13–14+….+1n–1(n+1)
=1–1(n+1) [ Rest all terms got cancelled ]
=(n+1-1)(n+1)
=n(n+1)
Hence, Option ‘B’ is Correct
1.2+2.3+3.4+....+n(n+1)=n(n+1)(n+2)3
Evaluate:
limn→∞1.2+2.3+3.4+...+n(n+1)n3