(1-i)(1+i) is equal to
cosπ2+isinπ2
cosπ2-isinπ2
sinπ2+icosπ2
Noneofthese
Explanation for the correct option:
Multiplying numerator and denominator by the conjugate of denominator
Let z=(1-i)(1+i)
⇒z=1-i1+i⋅1-i1-i=1-2i+i21−i2
Now i2=−1
⇒ z=1-2i+i21−i2=1-2i−11−(−1)
=-2i2
=-i
⇒z=cosπ2-isinπ2 ∵-i=cosπ2-isinπ2
Hence, Option ‘B’ is Correct.
1−i1+i is equal to