wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

1) Let z1=2i, z2=2+i, find
i) Re(z1z2¯¯¯z1)

2) Let z1=2i, z2=2+i, find
ii) Im(1z1¯¯¯z1)

Open in App
Solution

1) Given data : z1=2i, z2=2+i

Find the value of z1z2¯¯¯z1

z1z2=(2i)(2+i)=4+2i+2i(i)2 { i2=1}

=4+4i+1=3+4i .......(i)

And ¯¯¯z1 = conjugate of z1=2+i ...(ii)

From Equation (i) and (ii),

z1z2¯¯¯z1=3+4i2+i

Do rationalisation
On multiplying numerator and denominator by (2i), we obtain

z1z2¯z1=3+4i2+i×2i2i

=6+3i+8i4i2(2)2(i)2

=6+11i4(1)4+1

=2+11i5

=25+11i5

z1z2¯z1=25+11i5

Compare real parts

On comparing real parts, we obtain

Re(z1z2¯¯¯z1)=25

2) Given data : z1=2i,z2=2+i

Find the value of 1z1¯¯¯z1

¯Z1 = conjugate of z1=2+i

Now, 1z1¯¯¯z1=1(2i)(2+i)=1(2)2(i)2=14+1=15

Compare imaginary parts

On comparing imaginary parts, we get

Im(1z1¯¯¯z1)=0




flag
Suggest Corrections
thumbs-up
3
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon