1) Given data : z1=2−i, z2=−2+i
Find the value of z1z2¯¯¯z1
∴z1z2=(2−i)(−2+i)=−4+2i+2i−(i)2 { ∵i2=−1}
=−4+4i+1=−3+4i .......(i)
And ¯¯¯z1 = conjugate of z1=2+i ...(ii)
From Equation (i) and (ii),
z1z2¯¯¯z1=−3+4i2+i
Do rationalisation
On multiplying numerator and denominator by (2−i), we obtain
z1z2¯z1=−3+4i2+i×2−i2−i
=−6+3i+8i−4i2(2)2−(i)2
=−6+11i−4(−1)4+1
=−2+11i5
=−25+11i5
z1z2¯z1=−25+11i5
Compare real parts
On comparing real parts, we obtain
Re(z1z2¯¯¯z1)=−25
2) Given data : z1=2−i,z2=−2+i
Find the value of 1z1¯¯¯z1
∴¯Z1 = conjugate of z1=2+i
Now, 1z1¯¯¯z1=1(2−i)(2+i)=1(2)2−(i)2=14+1=15
Compare imaginary parts
On comparing imaginary parts, we get
Im(1z1¯¯¯z1)=0