(1−x2)dydx+2xy=x√1−x2
⇒dydx+2x(1−x2)y=x√1−x2(1−x2)
⇒dydx+2x1−x2y=x√1−x2........(1)
Comparing equation (1) by dydx+py=Q
P=2x1−x2,Q=x√1−x2
∴I.F=e∫2x1−x2dx
⇒I.F=eloglt
⇒I.F=1t=1(1−x2)
Multiplying equation (1) by 1(1−x2)
⇒1(1−x2)dydx+2x(1−x2)y
=x(1−x2)3/2
⇒ddx[1(1−x2).y]=x(1−x2)3/2
∫ddx[1(1−x2)y]dx=∫x(1−x2)3/2dx
⇒1(1−x2)y=1√1−x2+C
⇒y=√1−x2+(1−x2)C
This is required solution.