(1+x)n=p0+p1x+p2x2+p3x3+p4x4+.....
Keeping in view that we want 3p1 in (a), we multiply both side by x2.
∴x2(1+x)n
=p0x2+p1x3+p2x4+p3x5+p4x6+.....
Now put x = 1, ω, ω2 and add.
1.2n+ω2(1+ω)n+ω4(1+ω2)n
=3(p1+p4+p7+.....)
ω=−12+i√32=e2π/3,ω2=−12−i√32=e4πi/3
1+ω=12+i√32=eiπ/3,
1+ω=12−i√32=e−iπ/3
Hence from (1). L.H.S.
=2n+e4πi/3.enπi/3+e2πi/3.e−nπi/3
=2n+e−2πi/3.enπi/3+e2πi/3.e−nπi/3
=2n+e(n−2)πi3e−(n−2)πi3
2n+2cosn−23π=3Setc.