112+122+132+...202=
2481
2483
2485
2487
Explanation for the correct option:
Given series is
LetS=112+122+....+202
This can be written as
S=(12+22+....+202)-(12+22+....+102)
Sum of the Square of the first n Natural Numbers
12+22+32+42+....+n2=∑n2=n(n+1)(2n+1)6
⇒S=20(20+1)(2×20+1)6−10(10+1)(2×10+1)6
⇒S=17220−23106=2485
Hence, Option ‘C’ is Correct.