(100+11)3−(100−11)3=[1003+113+(3×1002×11)+(3×100×112)]−[1003−113−(3×1002×11)+(3×100×112)](∵(x+y)3=x3+y3+3x2y+3xy2,(x−y)3=x3−y3−3x2y+3xy2)=(1000000+1331+330000+36300)−(1000000−1331−330000+36300)=1000000+1331+330000+36300−1000000+1331+330000−36300=1331+330000+1331+330000=662662
Hence, 1113−893=662662.