The integral is given below as,
I= ∫ 2dx ( 1−x )( 1+ x 2 )
Use rule of partial fraction.
2 ( 1−x )( 1+ x 2 ) = A ( 1−x ) + Bx+C ( 1+ x 2 ) 2=A( 1+ x 2 )+( Bx+C )( 1−x ) 2= x 2 ( A−B )+x( B−C )+( A+C )
By equating the coefficients of x 2 ,xand constant term, we get
A−B=0 B−C=0 A+C=2
By solving above equations, we get
A=B=C=1
By substituting the values in integral, we get
I= ∫ 2dx ( 1−x )( 1+ x 2 ) = ∫ dx ( 1−x ) + ∫ ( x+1 )dx ( x 2 +1 ) =− ∫ dx ( x−1 ) + ∫ xdx ( x 2 +1 ) + ∫ dx 1+ x 2
On integrating, we get
I=−log| x−1 |+ 1 2 ∫ 2xdx ( x 2 +1 ) + tan −1 x+C =−log| x−1 |+ 1 2 log| 1+ x 2 |+ tan −1 x+C =log| 1 x−1 |+ 1 2 log| 1+ x 2 |+ tan −1 x+C