L.H.S.= cos 2 2x− cos 2 6x
Using the trigonometric identities
cosA+cosB=2cos( A+B 2 )⋅cos( A−B 2 ) cosA−cosB=−2sin( A+B 2 )⋅sin( A−B 2 )
Simplifying the L.H.S,
cos 2 2x− cos 2 6x =( cos2x+cos6x )⋅( cos2x−cos6x ) =[ 2cos( 2x+6x 2 )⋅cos( 2x−6x 2 ) ][ −2sin( 2x+6x 2 )⋅sin( 2x−6x 2 ) ] =[ 2cos4x⋅cos2x ][ −2sin4x⋅( −sin2x ) ] =( 2sin4x⋅cos4x )⋅( 2sin2x⋅cos2x ) =sin8x⋅sin4x [∵2sinθcosθ = sin2θ] =R.H.S
L.H.S. = R.H.S.
Hence, proved.
Prove that cos2 2x – cos2 6x = sin 4x sin 8x