The given equation is y= sin −1 ( 2x 1− x 2 )
y= sin −1 ( 2x 1− x 2 )`(1)
Let x=sinθ θ= sin −1 x
Substitute sinθ for x in (1).
y= sin −1 ( 2sinθ 1− sin 2 θ ) = sin −1 ( 2sinθcosθ ) = sin −1 ( sin( 2θ ) ) =2θ
Hence, y=2 sin −1 x
Differentiate both sides,
dy dx = 2 1− x 2
Thus, derivative of sin −1 ( 2x 1− x 2 ) is 2 1− x 2 .