wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

15 2 sinx- coSx15. 12Jodx1+sin x cos x

Open in App
Solution

The integral is given as,

I= 0 π 2 sinxcosx 1+sinxcosx dx (1)

Use the property 0 b f( x )dx = 0 b f( bx )dx to solve the integral as,

I= 0 π 2 sin( π 2 x )cos( π 2 x ) 1+sin( π 2 x )cos( π 2 x ) dx = 0 π 2 cos( x )sin( x ) 1+cos( x )sin( x ) dx (2)

Add the equation (1) and (2), we get

2I= 0 π 2 sinxcosx 1+sinxcosx dx + 0 π 2 cosxsinx 1+cosxsinx dx 2I= 0 π 2 sinxcosx+cosxsinx 1+sinxcosx dx I= 0 π 2 0 1+sinxcosx dx =0

Thus, the value of integral is 0.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 4
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon