The given function is cos −1 ( cos 7π 6 ).
It is known that cos −1 ( cosx )=x, if x∈[ 0,π ]. But 7π 6 ∉[ 0,π ]. So,
cos −1 ( cos 7π 6 )= cos −1 ( cos( − 7π 6 ) ) = cos −1 ( cos( 2π− 7π 6 ) ) = cos −1 ( cos( 5π 6 ) )
Now, 5π 6 ∈[ 0,π ]. So,
cos −1 ( cos 7π 6 )= cos −1 ( cos 5π 6 ) = 5π 6
Thus, the value of cos −1 ( cos 7π 6 )is 5π 6 .
Therefore, option (B) is correct.
Prove that:
cos x coss 2x cos 4x cos 8x = sin 16x/ 16sin x