1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard X
Mathematics
Sum of N Terms of an AP
2 + 4 + 6 + ....
Question
2
+
4
+
6
+
.
.
+
2
n
=
n
(
n
+
1
)
Open in App
Solution
2
+
4
+
6
+
.
.
.
.
.
.
.
.
.
+
2
n
2
[
1
+
2
+
3
+
.
.
.
.
.
.
.
.
.
+
n
]
=
2
×
(
n
(
n
+
1
)
2
)
=
n
(
n
+
1
)
Suggest Corrections
0
Similar questions
Q.
If n is a multiple of
6
, show that each of the series
n
−
n
(
n
−
1
)
(
n
−
2
)
⌊
3
⋅
3
+
n
(
n
−
1
)
(
n
−
2
)
(
n
−
3
)
(
n
−
4
)
⌊
5
⋅
3
2
−
.
.
.
.
.
,
n
−
n
(
n
−
1
)
(
n
−
2
)
⌊
3
⋅
1
3
+
n
(
n
−
1
)
(
n
−
2
)
(
n
−
3
)
(
n
−
4
)
⌊
5
⋅
1
3
2
−
.
.
.
.
.
,
is equal to zero.
Q.
Prove by method of induction, for all
n
∈
N
2
+
4
+
6
+
.
.
.
.
+
2
n
=
n
(
n
+
1
)
Q.
Find m if the following equation holds true
2
+
4
+
6
+
.
.
.
+
2
n
=
m
2
×
n
(
n
+
1
)
Q.
The sum to
n
terms of the series
(
1
×
2
×
3
)
+
(
2
×
3
×
4
)
+
(
3
×
4
×
5
)
+
…
is
Q.
1.2.3 + 2.3.4 + … +
n
(
n
+ 1) (
n
+ 2) =