The correct option is B 3π2
Given:
2π−(sin−145+sin−1513+sin−11665)
=2π−[tan−1(43)+tan−1(512)+tan−1(1663)]
=2π−tan−1⎛⎜
⎜
⎜⎝43+5121−43.512⎞⎟
⎟
⎟⎠−tan−1(1663)
=2π−tan−1(48+1536−20)−tan−1(1663)
=2π−[tan−1(6316)+cot−1(6316)]
=2π−π2 (∵tan−1+cot−1x=π2)
=3π2