[2sinθtanθ(1-tanθ)+2sinθsec2θ](1+tanθ)2
sinθ(1+tanθ)
2sinθ(1+tanθ)
2sinθ(1+tanθ)2
Noneofthese
Explanation for the correct option:
Solving the given expression:
2sinθtanθ(1−tanθ)+2sinθsec2θ(1+tanθ)2
=2sinθtanθ−2sinθtan2θ+2sinθ(1+tan2θ)(1+tanθ)2 ∵sec2x=1+tan2x
=2sinθtanθ−2sinθtan2θ+2sinθ+2sinθtan2θ(1+tanθ)2
=2sinθtanθ+2sinθ(1+tanθ)2
=2sinθ(1+tanθ)(1+tanθ)2
=2sinθ(1+tanθ)
Hence, Option ‘B’ is Correct.
(i) secθ−1secθ+1=sin2θ(1+cosθ)2
(ii) secθ−tanθsecθ+tanθ=cos2θ(1+sinθ)2
Prove the following trigonometric identities:
Prove that:
(i) √sec θ−1sec θ+1+√sec θ+1sec θ−1=2 cosec θ
(ii) √1+sin θ1−sin θ+√1−sin θ1+sin θ=2 cosec θ
(iii) √1+cos θ1−cos θ+√1−cos θ1+cos θ=2 cosec θ
(iv) sec θ−1sec θ+1=(sin θ1+cos θ)2
If sinθ1-θ2=12 and cosθ1+θ2=12,0°<θ1+θ2<90°,θ1>θ2, then find θ1and θ2.