Consider the given equation.
2x2−9x+10=0
Comparing that,
ax2+bx+c=0 we get,
a=2,b=−9,c=10
Then, using quadratic equation formula,
x=−b±√b2−4ac2a
x=9±√(−9)2−4×2×102×2
x=9±√81−804
x=9±14
Taking +ive,
x=9+14=104=52
Taking –ive,
x=9−14=84=2
option (B) is correct
Hence, this is the answer.