The correct option is
B 4z(4z+3)- Let us first factorize (32z2−18) as follows:
32z2−18=2(16z2−9)=2[(4z)2−32)]=2(4z+3)(4z−3)(∵a2−b2=(a+b)(a−b))
Since we have to divide 26z3(32z2−18)13z2(4z−3), therefore, we will divide 52z3(4z+3)(4z−3)13z2(4z−3) as shown below:
52z3(4z+3)(4z−3)13z2(4z−3)=5213×z3z2×(4z+3)(4z−3)(4z−3)=2×2×1313×z3×z−21×(4z+3)=4×z3−2×(4z+3)(∵ax+ay=ax+y)=4z(4z+3)
Hence, 26z3(32z2−18)13z2(4z−3)=4z(4z+3).