The given inequality is,
( 2x−1 ) 3 ≥ ( 3x−2 ) 4 − ( 2−x ) 5
Solve for real value of x,
( 2x−1 ) 3 ≥ 5( 3x−2 )−4( 2−x ) 20 ( 2x−1 ) 3 ≥ 15x−10−8+4x 20 ( 2x−1 ) 3 ≥ 19x−18 20
Solve by cross multiplication,
20( 2x−1 )≥3( 19x−18 ) 40x−20≥57x−54 40x−57x≥−54+20
On solving,
−x≥−2 x≤2
So, the value of x is less than or equal to 2.
Thus, x∈( −∞,2 ].