The correct options are
A y=1
B xy=π2−tan−1(43)
C x=π2−tan−1(43)
D xy=π2−tan−1(43)
3sinx+4cosx=y2−2y+6
3sinx+4cosx=(y−1)2+5
Now, maximum value of LHS i.e. 3sinx+4cosx is √9+16=5
which is possible only if y−1=0∴y=1
∴3sinx+4cosx=5
Putting 3=rcosθ,4=rsinθ⇒r=5
⇒5sin(x+θ)=5
⇒x+θ=π2
⇒x=π2−θ
⇒x=π2−tan−1(43)
⇒xy=π2−tan−1(43) (∵y=1)
⇒xy=π2−tan−1(43)