The correct option is
D (2q2+3pq−p2)We divide the given polynomial 3p3−9p2q−6pq2 by the monomial −3p as shown below:
⇒3p3−9p2q−6pq2−3p=3p3−3p−9p2q−3p−6pq2−3p=−3p33p+9p2q3p+6pq23p=−(3×p×p×p3p)−(3×3×p×p×q3p)+(2×3×p×q×q3p)=−p2+3pq+2q2
Hence, 3p3−9p2q−6pq2−3p=2q2+3pq−p2.