Given expression is,
3( 7+i7 )+i( 7+i7 )
Simplify the above expression as,
3( 7+i7 )+i( 7+i7 )=21+21i+7i+7 i 2 =21+28i−7 =14+28i
Thus, in the form of a+ib , the expression can be written as 14+28i .
Express the complex numbers in the form of a + ib:
3(7+i7)+i(7+i7)
If Z=∣∣ ∣∣25−i7+i5+i23−i7−i3+i7∣∣ ∣∣ and arg (z) = θ then θ = ___