The given differential equation is,
sec 2 xtanydx+ sec 2 ytanxdy=0
Divide the above differential equation with tanxtany on both the sides.
sec 2 xtanydx+ sec 2 ytanxdy tanxtany =0 sec 2 xtany tanxtany dx+ sec 2 ytanx tanxtany dy=0 sec 2 x tanx dx=− sec 2 y tany dy
Integrating both sides, we get,
∫ sec 2 x tanx dx =− ∫ sec 2 y tany dy (1)
Let,
I 1 = ∫ sec 2 x tanx dx I 2 =− ∫ sec 2 y tany dy
Let, tanx=t
Differentiating both sides, we get,
sec 2 xdx=dt sec 2 x= dt dx sec 2 xdx=dt
Similarly, for the variable y.
tany=r sec 2 ydy=dr sec 2 y= dr dx sec 2 ydy=dr
Substitute the value of sec 2 xdx and tany in I 1 .
∫ sec 2 x tanx dx = ∫ dt t =log| t | =log| tanx | (2)
Similarly, substitute the value of sec 2 ydy and tanx in I 2 .
− ∫ sec 2 y tany dy =−log| tany |+log C 2 (3)
Substitute the values of equations (2) and (3) in equation (1).
log| tanx |=−log| tany |+logC log| tanx |=log| C tany | tanx= C tany tanxtany=C