wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

46. Find the value of a2+Va1aVa2 -1

Open in App
Solution

The given expression is ( a 2 + a 2 1 ) 4 + ( a 2 a 2 1 ) 4 .

Using the Binomial theorem to expand ( x+y ) 4 and ( x+y ) 4 ,

( x+y ) 4 = C 4 0 ( x ) 40 + C 4 1 ( x ) 41 y+ C 4 2 ( x ) 42 y 2 + C 4 3 ( x ) y 3 + C 4 4 y 4 = x 4 +4 x 3 y+6 x 2 y 2 +4x y 3 + y 4 (1)

( xy ) 4 = C 4 0 ( x ) 40 C 4 1 ( x ) 41 y+ C 4 2 ( x ) 42 y 2 C 4 3 ( x ) y 3 + C 4 4 y 4 = x 4 4 x 3 y+6 x 2 y 2 4x y 3 + y 4 (2)

Therefore, the summation of the equation (1) and (2) is,

( x+y ) 4 + ( xy ) 4 =2( x 4 +6 x 2 y 2 + y 4 )

Substitute the value of x= a 2 and y= a 2 1 ,

( a 2 + a 2 1 ) 4 + ( a 2 a 2 1 ) 4 =2[ ( a 2 ) 4 +6 ( a 2 ) 2 ( a 2 1 ) 2 + ( a 2 1 ) 4 ] =2[ a 8 +6 a 4 ( a 2 1 )+ ( a 2 1 ) 2 ] =2[ a 8 +6 a 6 6 a 4 + a 4 2 a 2 +1 ] =2 a 8 +12 a 6 10 a 4 4 a 2 +2

Therefore, the value of ( a 2 + a 2 1 ) 4 + ( a 2 a 2 1 ) 4 is 2 a 8 +12 a 6 10 a 4 4 a 2 +2 .


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Binomial Theorem for Any Index
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon