The given trigonometric function is tan4x= 4tanx( 1− tan 2 x ) 1−6 tan 2 x+ tan 4 x .
The formula of trigonometric identity cosA−cosB is given by,
tan2A= 2tanA 1− tan 2 A
Solve the left hand side of the trigonometric function.
L.H.S.=tan4x =tan2( 2x ) = 2tan( 2x ) 1− tan 2 ( 2x ) = 2( 2tanx 1− tan 2 x ) 1− ( 2tanx 1− tan 2 x ) 2
Further simplify the above expression.
L.H.S.= ( 4tanx 1− tan 2 x ) [ 1− 4 tan 2 x ( 1− tan 2 x ) 2 ] = ( 4tanx 1− tan 2 x ) [ ( 1− tan 2 x ) 2 −4 tan 2 x ( 1− tan 2 x ) 2 ] = 4tanx( 1− tan 2 x ) ( 1− tan 2 x ) 2 −4 tan 2 x = 4tanx( 1− tan 2 x ) 1+ tan 4 x−2 tan 2 x−4 tan 2 x
Further simplify the above expression.
L.H.S.= 4tanx( 1− tan 2 x ) 1+ tan 4 x−6 tan 2 x = 4tanx( 1− tan 2 x ) 1−6 tan 2 x+ tan 4 x =R.H.S.
This is equal to the right hand side of the given trigonometric expression.
Thus, the trigonometric function is tan4x= 4tanx( 1− tan 2 x ) 1−6 tan 2 x+ tan 4 x .
Since L.H.S. = R.H.S.
Hence proved.