The integral of the function is given as,
sin( ax+b )cos( ax+b ) (1)
Multiply and divide equation (1) by 2
sin( ax+b )cos( ax+b )= 2sin( ax+b )cos( ax+b ) 2 = sin2( ax+b ) 2 (2)
Consider 2( ax+b )=t .
2ax+2b=t
Differentiating both sides, 2adx=dt
Substitute 2adx=dt in equation (2) and then integrate,
∫ sin2( ax+b ) 2 dx= 1 2 ∫ sint 2a dt = 1 4a ∫ sintdt = 1 4a [ −cost ]+C = −1 4a cos2( ax+b )+C
Thus, the required integral is I= −1 4a cos2( ax+b )+C .