[(5z−2)2+40z]÷(5z+2)
2z + 5
2z - 5
5z - 2
5z + 2
Simplifying, we get: [(5z−2)2+40z]=[25z2−20z+4+40z]=[25z2+20z+4] Factorizing: 25z2+20z+425z2+20z+4=(5z)2+2×(5z)×2+22a2+2ab+b2=(a+b)225z2+20z+4=(5z+2)2[((5z−2)2+40z)(5z+2)]=(5z+2)2(5z+2)=5z+2
Solve: [(5z−2)2+40z]÷(5z+2)
Simplify: [(5z−2)2+40z]÷(5z+2)
{(5z−2)2+40z}(5z+2)=