KBrO3+SeO2−3⟶Br2+SeO2−4+5Br⟶Bro nf=5
+4SeO2−3⟶+6SeO2−4 nf=2
Thus, number of equivalent of KBrO3 reacts with SeO2−3
n1×nf1(KBrO3)=n2×nf2(SeO2−3)⇒x×5=n2×2⟶(1)
Number of moles in 70ml of M60KBrO3=70×M1000×60 moles
Let x moles of KBrO3 reacts with SeO2−3
Thus, the excess i.e. (70M60000−x) will react with NaAsO2
Let say y,
Now by using n3×nf1=n4×nf4
Excess (KBrO3)
As +3AsO−2⟶+5AsO3−4
nf4=2
Thus, y×5=2×n4
⇒n4=12.5L1000L×M25
⇒n4=0.51000M
⇒5y=2×0.51000×M
⇒y=1×M5×1000⇒ excess of KBrO3 moles
Thus, the moles of KBrO3 reacts with SeO2−3
⇒x=70M60×1000−15×M1000=0.96M1000 moles
Now, put the value of x in equation 1, we get
⇒0.96M1000×5=2×n2
⇒n2=2.4×10−3M moles of SeO2−3
For 1M solution of SeO2−3
V=2.4×10−3L=2.4ml of 1M solution of SeO2−3.
or 2.4 millilitres of SeO2−3 are required.