The given expression ( 101 ) 4 .
The formula for binomial expansion is ,
. ( a+b ) n = C n 0 a n + C n 1 a n−1 b+ C n 2 a n−2 b 2 +..........+ C n n−1 a. b n−1 + C n n b n (1)
To apply the binomial theorem, power of expression is easier to calculate so we can write sum or difference of two number which is equal to 101 .
101=100+1 (2)
On comparing the equations (1) and (2), values of a=100, b=1 and n=4 .
( 101 ) 4 = ( 100+1 ) 4 = C 4 0 ( 100 ) 4 ( 1 ) 1 + C 4 1 ( 100 ) 3 ( 1 ) 2 + C 4 2 ( 100 ) 2 ( 1 ) 3 + C 4 3 ( 100 ) ( 1 ) 4 = ( 100 ) 4 +4 ( 100 ) 3 +6 ( 100 ) 2 +4( 100 )+ ( 1 ) 4 =104060401
Thus ( 101 ) 4 is equal to 104060401.