The correct option is A 42804
Note that 93+103+113+...+203=[13+23+...+203]−[13+23+...+83]
The sum of cubes of first n natural numbers is given by
Sn=[n(n+1)2]2.
⇒13+23+...+203=[20(20+1)2]2 =44100
⇒13+23+...+83=[8(8+1)2]2 =1296
∴93+103+113+...+203=44100−1296=42804