Factorization of Expressions Reducible to Difference of Two Squares
Trending Questions
Q.
Factorise:
a2+2ab+b2−c2
Q. Factorise a3−27.
- =(a−3)(a2+5a+9)
- =(a+3)(a2+5a+9)
- (a−3)(a2−5a+9)
- (a−3)(a3+5a+9)
Q. Factorise 98(a+b)2−2
- 2[7a+7b+1][7a+b−1]
- 2[7a+7b+1][7a+b+1]
- 2[7a+7b−1][7a+b−1]
- 2[7a−7b+1][7a+b−1]
Q.
Factorize: 75(a+b)2−48(a−b)2.
3(a+9b)(9a+b))
3(a+3b)(3a+b))
3(a−9b)(9a+b))
3(a−9b)(9a−b))
Q. Factorise: a2+b2−c2−d2+2ab−2cd
- (a+b−c−d)(a+b+c+d)
- (a+b+c+d)2
- (a−b−c+d)(a−b+c+d)
- (a+b−c+d)(a+b+c+d)
Q. How do you factor x2−25?
Q. Factorize: 24a3+37a2−5a
- (a+1)(8a−1)(3a+5)
- a(8a−1)(3a+5)
- a(8a+1)(3a−5)
- (8a−1)(3a+5)
Q. Factorise: 27x3+y3+z3−9xyz
Q. The expression (2x2−7x−15) is factorizable.
- True
- False
Q. Factorize
25x2+16y2+4z2−40xy+16yz−20xz
25x2+16y2+4z2−40xy+16yz−20xz
Q.
How do you factorize ?
Q. Factorise: (a2+b2−4c2)2−4a2b2
- (a2+b2+4c2−2ab)(a2+b2+4c2+2ab)
- (a2+b2−4c2−2ab)2
- (a2+b2−4c2−2ab)(a2+b2−4c2+2ab)
- (a2−b2−4c2−2ab)(a2−b2−4c2+2ab)
Q. Factorise 4x2−12ax−y2−z2−2yz+9a2
- (2x2−3a+y+z)(2x−3a2−y−z)
- (2x−3a+y+z)(2x−3a−y−z)
- (2x−3a+y+z)(2x2−3a−y−z3)
- (2x−3a+y+z)(2x−3a3−y+z)
Q. Factorise 4xy−x2−4y2+z2
- (z−x+2y)(z+x+2y)
- (z−2x2+2y)(z+x+2y)
- =(z−x+2y)(z2+x+2y2)
- (z−x+2y)(z+x2−2y)
Q. Factorise 8a3−b3−4ax+2bx
- =(2a−b)[4a2+b2+2ab−2x]
- (2a−b)[4a2+b+ab−2x]
- (2a−b)[4a2−b2−2ab+2x]
- (2a−b)[4a2+b−2ab+2x]
Q. Simplify the square root of the polynomial using factorisation method: a2a2−b2+b2b2−a2
- √1
- −1
- 1
- √−1
Q. Factorise a6−b6
- (a+b)(a−b)(a2+b2+a2b2)
- (a−b)(a−b)(a4+b2+a2b2)
- =(a+b)(a−b)(a4+b4+a2b2)
- (a+b)(a−b)(a4+b4+ab)
Q. Factors of (x2−2xy+y2)−z2 are
- (x−y−z)
- (x+y−z)
- 1
- (x−y+z)
Q. Factorise 27a3+8b3−18a2b−12ab2
Q. Factorise: a12−b12
- (a6+b6)(a+b)(a2−ab−b2)(a2+ab+b2)
- (a6−b6)(a+b)(a2−ab+b2)(a2+ab+b2)
- (a2+b2)(a4+b4−a2b2)(a+b)(a2+b2−ab)(a−b)(a2+b2+ab)
- (a6+b6)(a−b)(a2−ab+b2)(a2+ab+b2)
Q.
Write the factorisation of
Q. The factorisation of a4−1 is equal to .
- (a+1)(a−1)(a2+1)
- (a−1)(a−1)(a2+1)
- (a+1)(a+1)(a2+1)
- (a+1)(a−1)(a2−1)