Buoyant Force
Trending Questions
A cubical block is floating in a liquid with half of its volume immersed in the liquid. When the whole system accelerates upwards with acceleration of g/3, the fraction of volume immersed in the liquid will be
1/2
3/8
2/3
3/4
A glass full of water has a bottom of area 20 cm2, top of area 20 cm2, height 20 cm and volume half a liter. Considering the equilibrium of the water, find the resultant force exerted by the sides of the glass on water. Atmospheric pressure = 105 N/m2, density of water = 1000 kg/m3 and g = 10 m/s2.
204 N upwards
205 N upwards
1 N upwards
205 N downwards
- (η−1η)
- ηmg
- mgη−1
- (η−1)mg
A metallic block of density 5 gm cm−3 and having dimensions 5 cm × 5 cm × 5 cm is weighed in water. Its apparent weight will be
4 × 4 × 4 × 4 gf
5 × 5 × 5 × 5 gf
5 × 4 × 4 × 4 gf
4 × 5 × 5 × 5 gf
A cork is submerged in water by a spring attached to the bottom of a bowl. When the bowl is kept in an elevator moving with acceleration downwards, the length of spring
Increases
Decreases
Remains unchanged
None of these
A fisherman hooks an old log of wood of weight 12N and volume 1000 cm3. He pulls the log half way out of water. The tension in the string at this instant is
8 N
10 N
7 N
12 N
- Surface tension
- Both (a) and (b)
- None of these
- Surface energy
- 2π√pbapwg
- 2π√pwapbg
- 4π3√pbapwg+pbpw−pb√4pwa3pbg
- 2π3√pbapwg+pbpw−pb√2pwa3pbg
- Zero
- Equal to the weight of the liquid displaced
- Equal to the weight of the body in air
- Equal to the weight of the immersed position of the body
A U-tube contains water and oil separated by mercury. The mercury columns in the two arms are at the same level with 10 cm of water in one arm and 12.5 cm of oil in the other, as shown in the figure. What is the relative density of oil?
0.8
1.0
1.2
1.4
A cubical block is floating in a liquid with half of its volume immersed in the liquid. When the whole system accelerates upwards with acceleration of g/3, the fraction of volume immersed in the liquid will be
1/2
3/8
2/3
3/4
- 6000 kg/m3
- 5000 kg/m3
- 4000 kg/m3
- 7000 kg/m3
A log of wood of mass 120 Kg floats in water. The weight that can be put on the raft to make it just sink should be (density of wood=600Kg/m3)
80 Kg
50 Kg
60 Kg
30 Kg