Definite Integrals
Trending Questions
Where should the tank be punctured so that water coming out has maximum horizontal range?
y=h2
y=h3
y=h4
None of these
- 5
- 2
- 7
- \N
- 30 m/s
- 39 m/s
- 3 m/s
- 20 m/s
- e−1
- e+1
- e−23
- e+23
- 1253
- 1243
- 13
- 45
- 4√23
- 2√2−2
- 43[√2−1]
- 23[2√2−1]
- −325
- −6085
- −6405
- −6645
Find the area enclosed by the curve y=x2 and the x-axis for interval x = 1 to x = 3.
9 sq. units
263 sq. units
27.2 sq. units
10 sq. units
The velocity v and displacement x of a particle executing simple harmonic motion are related as
vdvdx=−ω2x
At x=0, v=v0. Find the velocity v when the displacement becomes x.
v=√v20−ω2x2
√v20+ω2x2
v=√v0−ω20x
None of these
i. ∫π20(sin x + cos x)dx
ii. ∫10(3x2+4)dx
iii. ∫10(3e3x+e−x)dx
- i. 0; ii. 5; iii. e4−1e
- i. 0; ii. 5; iii. e3−1
- i. 2; ii. 5; iii. e3−1
- i. 2; ii. 5; iii. e4−1e
- 26 m
- 263 m
- 307 m
- 267 m
∫π/2−π/2cos xdx
1 unit
2 units
0 unit
None of these
∫π/2−π/2cos xdx
1 unit
2 units
0 unit
None of these
- 4√23
- 2√2−2
- 43[√2−1]
- 23[2√2−1]
∫100sec2(3x+6)dx
13tan(36o)
13tan(6o)
13tan(30o)
None of these
- GMmR
- −GMmR
- −GMmR2
- −GMmR2
- π33−1
- π33
- π33+1
- \N
- π
- π2
- 0
- π4
- GMmR
- −GMm2R
- −GMmR
- −GMmR2
- −325
- −6085
- −6405
- −6645
Find the area enclosed by the curve y=x2 and the x-axis for interval x = 1 to x = 3.
9 sq. units
263 sq. units
27.2 sq. units
10 sq. units
- (3y2+4y+3)22+C
- 3y2+4y+3+C
- (6y+4)3y2+4y+3+C
- 13y2+4y+3+C
Solve the integral I = ∫π0sin2xdx
π
π2
3π2
0
- −6405
- −6645
- −325
- −6085
- π33−1
- π33
- π33+1
- \N
- 92
- 97
- 79
- 29
- 5 ln 5−2 ln 2−3
- 5 ln 5+2 ln 2−3
- 5 ln 5−2 ln 2−7
- 5 ln 5−2 ln 2+3