Unit Vectors
Trending Questions
- √0.3
- √0.4
- √0.6
- √0.8
- 1
- √0.11
- √0.01
- √0.39
- 2^i+4^j
- 2^i−4^j
- 3^i−4^j
- 2^i−3^j
Given →A=0.3^i+0.4^j+c^k. Calculate the value of c if A is a unit vector.
0.75
0.87
0.96
0.45
- 35^i + 45^j
- 45^i + 35^j
- 54^i + 53^j
- 53^i + 54^j
V-आकृति के एक धारावाही तार को दर्शाए अनुसार B परिमाण के एकसमान चुम्बकीय क्षेत्र के अन्दर रखा जाता है। तार पर नेट चुम्बकीय बल है
- Zero
शून्य - 2IBL
- IBL2
- IBL
- (4^i+4^j−2^k)
- (2^i+2^j−^k)
- (8^i+8^j−4^k)
- (^i+^j−^k)
- 35^i + 45^j
- 45^i + 35^j
- 54^i + 53^j
- 53^i + 54^j
Match the following vectors with their correct Notation
(i)Vector A(ii)Vector F(iii)Vector D(iv)Vector B(v)Vector E(A)3^i(B)−2^j(C)−2^i(D)2^i(E)2^i+2^j
(i) - A, (ii) - B, (iii) - C, (iv) - D, (v) - E
(i) - D, (ii) - B, (iii) - C, (iv) - A, (v) - E
(i) - D, (ii) - B, (iii) - C, (iv) - E, (v) - A
(i) - E, (ii) - D, (iii) - C, (iv) - B, (v) - A
Statement -2: Angle between two vectors →A and →B is given by θ=cos−1⎛⎜⎝→A.→B|→A||→B|⎞⎟⎠
- Statement - 1 is True, Statement -2 is True;
Statment -2 is a correct explanation for Statement -1 - Statement -1 is True, Statement -2 is True;
Statement - 2 is NOT a correct explanation for Statement -1 - Statement - 1 is True, Statement - 2 is False
- Statement - 1 is False, Statement - 2 is True
- 4^i−^j−^k
- 4^i√18−^j√18−^i√18
- −4^i√18+^j√18+^k√18
- −4^i+^j+^k
- 30∘
- 45∘
- 60∘
- 75∘
- →A×→B|→A| |→B|
- →A⋅→B|→A| |→B| cosθ
- →A×→B|→A| |→B| sinθ
- →A⋅→B|→A| |→B| sinθ
If a unit vector is represented by 0.5^i+0.8^j+c^k, then the value of ‘c’ is
1
√0.11
√0.01
√0.39
Given vector →A=2^i+3^j, the angle between →A and y-axis is
tan−132
tan−123
sin−123
cos−123
Represent point 3, -4, 5 in unit vector representation.
3^i+4^j+5^k
3^i−4^j+5^k
3^i−4^j−5^k
5^i−5^j+3^k
The unit vector along ^i+^j is
^k
^i+^j
^i+^j√2
^i+^j2
The sum of vectors A, D and E will be
vector A
vector E
vector D
none of these
- ^j+^k
- ^j−^k
- ^i+^j+^k
- −^i+2^j−^k
Add the following vectors:
→A=5^i+6^j−10^k
→B=−10^i−6^j+10^k
0
−5^i+0^j+0^k
10^i+6^j+10^k
Both a and b
- 20^i+15^j
- 15^i+18^j
- 15^i+20^j
- 18^i+15^j
The vector projection of a vector 3^i+4^k on y-axis is
the vector representing the body diagonal from the origin is?
5^i+3^j+4^k
4^i+5^j+3^k
5^i+4^j+3^k
5^i+4^j−3^k
- →A×→B|→A| |→B|
- →A⋅→B|→A| |→B| cosθ
- →A×→B|→A| |→B| sinθ
- →A⋅→B|→A| |→B| sinθ
- ˆi+ˆj+ˆk
- ˆi−ˆj+ˆk
- ˆi+ˆj−ˆk
- ˆi−ˆj−ˆk
- 4^i−^j−^k
- 4^i√18−^j√18−^i√18
- −4^i√18+^j√18+^k√18
- −4^i+^j+^k
- →A×→B|→A|⋅|→B|
- →A×→B|→A|⋅|→B|sinθ
- →A×→B|→A|⋅|→B|cosθ
- →A⋅→B|→A|⋅|→B|sinθ
A vector is represented by 3^i+^j+2^k. Its length in XY plane is
2
√14
√10
√5
- 2^i+3^j
- 2^i+3^j2
- 2^i+3^j3
- 2^i+3^j√13