The correct option is A 5
Given,
A(−1,1),B(1,3) and C(3,a)
We know, distance
=√[(x2−x1)2+(y2−y1)2]
For distance AB,
A(x1,y1)=(−1,1) and B(x2,y2)=(1,3)
AB =√[(1+1)2+(3−1)2]
=√[22+22]
=√8
For distance BC,
B(x1,y1)=(1,3) and C(x2,y2)=(3,a)
BC=√[(3−1)2+(a−3)2]
=√[22+(a−3)2]
=√[4+(a−3)2]
Given, AB = BC
Hence,
⇒√8=√[4+(a−3)2]
⇒4+(a−3)2=8
⇒(a−3)2=4
⇒a−3=2
⇒a=5