A(1, 2, 3), B(0, 4, 1), C(-1, -1, -3) are the vertices of a triangle ABC.
Find the point in which the bisector of the angle ∠BAC meets BC.
AB = √(−1)2+22+(−2)2
=√1+4+4=3=√9=3
AC = √(−2)2+(−3)2+(−6)2=√4+9+36=7
=√49=7
AD is the internal bisector of ∠BAC
∴BCDC=ABAC=37
∴D=(3(−1)+3×03+7,3(−1)+7×(4)3+7,3(−3)+7×13+7)
⇒D≡(−310,2510,−210)
⇒D≡(−310,52,−15)