The Cartesian equation of a line passing through B(0,−11,4) and C(2,−3,1) is,
x−x1x2−x1=y−y1y2−y1=z−z1z2−z1
Therefore, equation of line BC is,
⇒x−02−0=y+11−3+11=z−41−4
⇒x2=y+118=z−4−3
Consider the diagram shown below. Let L be the foot of the perpendicular from point A(1,8,4) to the given line.
The coordinates of point L on the line BC is given by,
x2=y+118=z−4−3=λ
⇒x=2λ
⇒y=8λ−11
⇒z=−3λ+4
The direction ratios of AL is (x2−x1),(y2−y1),(z2−z1).
⇒(2λ−1),(8λ−11−8),(−3λ+4−4)
⇒(2λ−1),(8λ−19),(−3λ)
Since, both the lines are perpendicular, we know that
a1a2+b1b2+c1c2=0
2(2λ−1)+8(8λ−19)+(−3)(−3λ)=0
4λ−2+64λ−152+9λ=0
77λ=154
λ=2
Therefore, coordinates of L are,
x=2(2)=4
y=8(2)−11=5
z=−3(2)+4=−2
Hence, the coordinates of the foot of the perpendicular is (4,5,−2).