Here we see that
An has
n2 terms.
Hence total number of terms upto A9 is 1+22+32+...+92
=9(9+1)(2×9+1)6=285 using formula n(n+1)(2n+1)6
Hence A10 will start with a286
A10=⎡⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣a286a287......a295a296a297a298.....a305a306a307a308.....a315...............⎤⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦
This A10 is a 10×10 matrix.
Trace of A10 is sum of diagonal elements of $A_{10}
Following the difference of 11 in term no. we can extrapolate all the 10 diagonal terrms.
Tr(A)=a286+a297+a308+a319+a330+a341+a352+a363+a374+a385
=[log2286]+[log2297]+[log2308]+[log2319]+[log2330]+[log2341]+[log352]+[log2363]+[log2374]+[log2385]
Now, 28=256 and 29=512
⟹log2x∈(8,9)∀x∈(256,512)
Since ar=[log2r] and here 256<r<512
⟹log2r∈(8,9)
⟹[log2r]=8
Hence Tr(A)=8+8+8...upto 10 times =8×10 $
Tr(A)=80