A(1,1),B(5,4),C(3,8),D(−1,2) are the vertices of □ABCD. If P,Q,R,S are the mid-points of ¯¯¯¯¯¯¯¯AB,¯¯¯¯¯¯¯¯BC,¯¯¯¯¯¯¯¯¯CD,¯¯¯¯¯¯¯¯¯DA respectiely, show that PQRS is parallelogram.
Open in App
Solution
ABCD is a parallelogram so co-ordinates of P
⇒(1+52,1+92)
P(3,52)
Q=(5+32,4+82)⇒(4,6)
R=(3+(−1)2,4+82)⇒(1,5)
S=(−1+12,2+12)⇒(0,32)
PQ=√(4−3)2+(6−522)
=
⎷12+(722)⇒√534
QR=√(1−4)2+(5−6)2
=√(−3)2+(−1)2=√10
RS=√(0−1)2+(32−5)2
=√(−1)2+(−72)2=√534
SP=√(3−0)2+(52,−32)2
=√(3)2+(1)2=√10
So PQ=RS and QR=SP as in parallelogram opposite sides are equal.