The correct option is
B 38√170Consider the problem
The coordinates of A,B,C are (5,4,6),(1,−1,3),(4,3,2) respectively and angle bisector of A meets BC at D.
Then,
BDCD=ABAC
BDCD=√(1−5)2+(−1−4)2+(3−6)2√(4−5)2+(3−4)2+(2−6)2=√16+25+9√1+1+16=53
BD:CD=5:3
Now using section formula coordinates of D are
(5×4+3×15+3,5×3+3×(−1)5+3,5×2+3×35+3)
=(238,32,198)
AD=√(238−5)2+(32−4)2+(198−6)2
AD=√(23−408)2+(3−82)2+(19−488)2
AD=√(−178)2+(−52)2+(−298)2
=√153064
=3√1708 units
Hence, the length of AD is =3√1708 units